6,975 research outputs found

    Comfortable, lightweight safety helmet holds radio transmitter, receiver

    Get PDF
    For two-way radio communication where safety gear is required, a lightweight helmet with few protrusions has been designed. The electronics components and power supply are mounted between the inner and outer shells, and resilient padding is used for the lining

    Remote sensing of air-sea interactions

    Get PDF
    A number of preliminary concepts for the measurement or inference of fluxes across the air-sea interface through remote sensing are proposed. All the methods are achievable from aircraft with state-of-the-art technology. Only one is now ready for space implementation. The focus is on cold outbreaks. Sensible (latent) heat flux is inferred from the difference between initial surface air temperature (vapor mixing ratio) and the downwind SST (and corresponding saturation mixing ratio). The downwind growth rate of the PBL as measured by lidar also provides estimates of surface heating and the cross-inversion entrainment velocity. The lidar also provides a measure of the depth of the inversion and its penetration by surface-forced convection; this permits estimates of the surface heat flux. Lidar and radiometric measurements of cloud top height and temperature provide means of deducing the temperature sounding downstream so that heating is computed with the aid of a known sounding upstream

    Simultaneous ocean cross-section and rainfall measurements from space with a nadir-pointing radar

    Get PDF
    A method to determine simultaneously the rainfall rate and the normalized backscattering cross section of the surface was evaluated. The method is based on the mirror reflected power, p sub m which corresponds to the portion of the incident power scattered from the surface to the precipitation, intercepted by the precipitation, and again returned to the surface where it is scattered a final time back to the antenna. Two approximations are obtained for P sub m depending on whether the field of view at the surface is either much greater or much less than the height of the reflection layer. Since the dependence of P sub m on the backscattering cross section of the surface differs in the two cases, two algorithms are given by which the path averaged rain rate and normalized cross section are deduced. The detectability of P sub m, the relative strength of other contributions to the return power arriving simultaneous with P sub m, and the validity of the approximations used in deriving P sub m are discussed

    Coast-ocean-atmosphere-ocean mesoscale interaction

    Get PDF
    In the case of cold air outbreaks, the combination of the coastal shape and the sea surface temperature (SST) pattern have a profound effect in establishing a low level mesoscale atmospheric circulation as a result of differential heating due to both variations in overwater path length and the SST. A convergence (or divergence) line then forms along a line exactly downwind of the major bend in the coastline. All this is consistent with the structure of the cloud patterns seen in a high resolution Landsat picture of the cloud streets and the major features are simulated well with a boundary layer model. The dominant convergence line is marked by notably larger clouds. To its east the convective roll clouds grow downstream in accord with the deepening of the boundary layer. To its west (i.e., coastal side) where the induced pressure field forces a strong westerly component in the boundary layer, the wind shear across the inversion gives rise to Kelvin-Helmholtz waves and billow clouds whose orientation is perpendicular to the shear vector and to the major convergence line. The induced mesoscale circulation will feedback on the ocean by intensifying the wind generated ocean wave growth and altering their orientation. Coastal cyclogenesis is due in large part not only to the fluxes of heat and moisture from the ocean, but particularly to the differential heating and moistening of the boundary layer air when the air trajectories pass over a well defined pattern of SST

    Determination of rain rate from a spaceborne radar using measurements of total attenuation

    Get PDF
    Studies shows that path-integrated rain rates can be determined by means of a direct measurement of attenuation. For ground based radars this is done by measuring the backscattering cross section of a fixed target in the presence and absence of rain along the radar beam. A ratio of the two measurements yields a factor proportional to the attenuation from which the average rain rate is deduced. The technique is extended to spaceborne radars by choosing the ground as reference target. The technique is also generalized so that both the average and range-profiled rain rates are determined. The accuracies of the resulting estimates are evaluated for a narrow beam radar located on a low earth orbiting satellite

    Measurement of Jets and Jet Suppression in sqrt(s_NN)=2.76 TeV Lead-Lead Collisions with the ATLAS detector at the LHC

    Full text link
    The first results of single jet observables in Pb+Pb collisions at sqrt(s_NN)=2.76 TeV measured with the ATLAS detector at the LHC are presented. Full jets are reconstructed with the anti-kt algorithm with R= 0.2 and 0.4, using an event-by-event subtraction procedure to correct for the effects of the underlying event including elliptic flow. The geometrically-scaled ratio of jet yields in central and peripheral events,Rcp, indicates a clear suppression of jets with ET >100 GeV. The transverse and longitudinal distributions of jet fragments is also presented. We find little no substantial change to the fragmentation properties and no significant change in the level of suppression when moving to the larger jet definition.Comment: 5 pages, 6 figures, proceedings for Quark Matter 2011, Annecy, France, May 23-28, 201

    LHC Coverage of RPV MSSM with Light Stops

    Full text link
    We examine the sensitivity of recent LHC searches to signatures of supersymmetry with R-parity violation (RPV). Motivated by naturalness of the Higgs potential, which would favor light third-generation squarks, and the stringent LHC bounds on spectra in which the gluino or first and second generation squarks are light, we focus on scenarios dominated by the pair production of light stops. We consider the various possible direct and cascade decays of the stop that involve the trilinear RPV operators. We find that in many cases, the existing searches exclude stops in the natural mass range and beyond. However, typically there is little or no sensitivity to cases dominated by UDD operators or LQD operators involving taus. We propose several ideas for searches which could address the existing gaps in experimental coverage of these signals.Comment: 41 pages, 12 figures; v2: included new searches (see footnote 10), minor corrections and improvement

    The multi-parameter remote measurement of rainfall

    Get PDF
    The measurement of rainfall by remote sensors is investigated. One parameter radar rainfall measurement is limited because both reflectivity and rain rate are dependent on at least two parameters of the drop size distribution (DSD), i.e., representative raindrop size and number concentration. A generalized rain parameter diagram is developed which includes a third distribution parameter, the breadth of the DSD, to better specify rain rate and all possible remote variables. Simulations show the improvement in accuracy attainable through the use of combinations of two and three remote measurables. The spectrum of remote measurables is reviewed. These include path integrated techniques of radiometry and of microwave and optical attenuation

    Searches for phenomena beyond the Standard Model at the LHC with the ATLAS and CMS detectors

    Full text link
    The LHC has delivered several fb-1 of data in spring and summer 2011, opening new windows of opportunity for discovering phenomena beyond the Standard Model. A summary of the searches conducted by the ATLAS and CMS experiments based on about 1 fb-1 of data is presented.Comment: Presented at Lepton-Photon 2011, Mumbai, India; 10 pages, 11 figure

    The outlook for precipitation measurements from space

    Get PDF
    To provide useful precipitation measurements from space, two requirements must be met: adequate spatial and temporal sampling of the storm and sufficient accuracy in the estimate of precipitation intensity. Although presently no single instrument or method completely satisfies both requirements, the visible/IR, microwave radiometer and radar methods can be used in a complementary manner. Visible/IR instruments provide good temporal sampling and rain area depiction, but recourse must be made to microwave measurements for quantitative rainfall estimates. The inadequacy of microwave radiometer measurements over land suggests, in turn, the use of radar. Several recently developed attenuating-wavelength radar methods are discussed in terms of their accuracy, dynamic range and system implementation. Traditionally, the requirements of high resolution and adequate dynamic range led to fairly costly and complex radar systems. Some simplications and cost reduction can be made; however, by using K-band wavelengths which have the advantages of greater sensitivity at the low rain rates and higher resolution capabilities. Several recently proposed methods of this kind are reviewed in terms of accuracy and system implementation. Finally, an adaptive-pointing multi-sensor instrument is described that would exploit certain advantages of the IR, radiometric and radar methods
    corecore